Spatial variability in the flow of a valley glacier: Deformation of a large array of boreholes
نویسندگان
چکیده
Measurements of the deformation of a dense array of boreholes in Worthington Glacier, Alaska, show that the glacier moves with generally bed-parallel motion. Strain in the 200 rn deep valley glacier is constant near the surface but follows a nonlinear vertical profile below a depth of about 120 m. By a depth of 180 m, the octahedral strain rate reaches 0.35 yr -•. The three-dimensional velocity field shows spatial complexity with significant deviations from plane strain, despite relatively simple valley geometry in the vicinity of the 6 x 10 6 rn • study volume. No evidence was found for time-varying deformation or movement along localized shear planes. Observations were made by repeatedly measuring the long-axis geometry of 31 closely spaced boreholes over a 70 day period, and three additional holes after 1 full year of deformation. The holes were spaced 15 to 30 rn apart. Installation and measurement of such a large number of boreholes required the development of a semiautomated hot water drilling system that creates straight and vertical boreholes with uniform walls. The equipment and procedures enables borehole profiles to be measured without the use of hole casing. Inclinometry measurements collected in the holes were processed, analyzed for error, and visualized as a fully three-dimensional data set. The new methods offer unique insight into small-scale spatial and temporal variations in the pattern of flow in a valley glacier.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملRapid advance of two mountain glaciers in response to mine‐related debris loading
Rapid glacier advance is known to occur by a range of mechanisms. However, although large-scale debris loading has been proposed as a process for causing rapid terminus advance, it has rarely been observed. We use satellite remote sensing data to observe accelerated glacier terminus advance in response to massive supraglacial loading on two glaciers in Kyrgyzstan. Over a 15 year period, mining ...
متن کاملReconstruction Glacier Circus in volcanic craters (Case study Kurdistan Qorveh)
Extended abstract Introduction The attention of forefront foreign researchers has focused on glacier circus. Glacial cirque is the most important pattern of glacial erosion. Deep depressions with steep walls, flat floor or low slope, half-bowl shaped (crescent shaped) are created at high altitudes in the mountains margin by the erosion of mountain glacier (Ahmadi, Feiznia, 2012). Th...
متن کاملSpatial variability analysis of subsurface soil in Mashhad city, NE Iran
Reliable characterization of subsurface soil in urban areas is a major concern in geotechnical and geological engineering projects. In this regard, this research deals with development of a 3D geological engineering model on Mashhad City soil using Sequential Gaussian Simulation (SGS) approach. The intense variability of soil in the study area has sometimes caused serious problems in civil engi...
متن کاملSpatial variability of forest growing stock using geostatistics in the Caspian region of Iran
Estimating the amount of variation due to spatial dependence at different scales provides a basis for designing effective experiments. Accurate knowledge of spatial structures is needed to inform silvicultural guidelines and management decisions for long term sustainability of forests. Furthermore, geostatistics is a useful tool to describe and draw map the spatial variability and estimation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016